Skip to main content
DA / EN

Protein Oxidation in Liver Health and Disease

Investigating Protein Oxidation in Hepatocyte Responses to Drugs and Xenobiotics

The goal of our research is to uncover the role of protein oxidation in hepatocyte responses to drugs, xenobiotics, and genotoxic compounds. Understanding these mechanisms is crucial for advancing knowledge of liver physiology and pathology, as well as for improving drug safety assessments.
We have developed a 3D cell culture model based on a hepatocarcinoma cell line, using multicellular spheroids propagated in rotary bioreactors. This system closely mimics the liver’s microenvironment, providing a more physiologically relevant platform for studying liver function and responses to external stimuli.

We integrate proteomics to evaluate changes in protein expression and post-translational modifications, alongside lipidomic analysis to investigate lipid metabolism and accumulation. Additionally, we have developed advanced redox-proteomics approaches that enable the detection of specific oxidative modifications, such as S-nitrosylation, S-sulfenylation, and protein carbonylation. These tools allow us to study oxidative damage at unprecedented levels of precision, providing insights into the molecular pathways impacted by oxidative stress in hepatocytes.

 

Publications
  1. Havelund, J. F.; Wojdyla, K.; Davies, M. J.; Jensen, O. N.; Møller, I. M.; Rogowska-Wrzesinska, A. (2017): A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. J Proteomics 156, 40-51. http://dx.doi.org/10.1016/j.jprot.2016.12.019.
  2. .http://dx.doi.org/10.1039/c5tx00469a. (2016): Acetaminophen-induced S-nitrosylation and S-sulfenylation signalling in 3D cultured hepatocarcinoma cell spheroids. Toxicol Res (Camb) 5, 3, 905-920. Rogowska-Wrzesinska, AWojdyla, K.; Wrzesinski, K.; Williamson, J.; Fey, S. J.;
  3. .http://dx.doi.org/10.1016/j.jprot.2014.10.015. (2015): The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations. J Proteomics 113, 415-434. Rogowska-Wrzesinska, AWojdyla, K.; Williamson, J.; Roepstorff, P.;
  4. .http://dx.doi.org/10.1016/j.redox.2015.08.005. (2015): Differential alkylation-based redox proteomics--Lessons learnt. Redox Biol 6, 240-252. Rogowska-Wrzesinska, AWojdyla, K.;
  5. .http://dx.doi.org/10.1016/j.redox.2015.04.001.; Rattan, S. I. S. (2015): Standardization and quality control in quantifying non-enzymatic oxidative protein modifications in relation to ageing and disease: Why is it important and why is it hard? Redox Biol 5, 91-100. Rogowska-Wrzesinska, ANedić, O.;
  6. .http://dx.doi.org/10.1016/j.redox.2014.12.014.; Willetts, R.; Korkmaz, A.; Atalay, M.; Weber, D.; Grune, T.; Borsa, C.; Gradinaru, D.; Chand Bollineni, R.; Fedorova, M.; Griffiths, H. R. (2015): Validation of protein carbonyl measurement: a multi-centre study. Redox Biol 4, 149-157. Rogowska-Wrzesinska, AAugustyniak, E.; Adam, A.; Wojdyla, K.;
  7. Rogowska-Wrzesinska, A.http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.808.; Wojdyla, K.; Williamson, J.; Roepstorff, P. (2014): Measuring site occupancy: a new perspective on cysteine oxidation. Free Radic Biol Med 75 Suppl 1, S46-47.
  8. Rogowska-Wrzesinska, A.http://dx.doi.org/10.3109/10715762.2014.944868.; Wojdyla, K.; Nedić, O.; Baron, C. P.; Griffiths, H. R. (2014): Analysis of protein carbonylation--pitfalls and promise in commonly used methods. Free Radic Res 48, 10, 1145-1162.
  9. .http://dx.doi.org/10.1016/j.jprot.2011.05.004.; Rao, R. S. (2011): Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J Proteomics 74, 11, 2228-2242. Rogowska-Wrzesinska, AMøller, I. M.;

Department of Biochemistry and Molecular Biology University of Southern Denmark

  • Campusvej 55
  • Odense M - DK-5230
  • Phone: +45 6550 2412

Last Updated 25.11.2024